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Abstract: The U.S. Geological Survey has produced the Landsat Burned Area Essential Climate
Variable (BAECV) product for the conterminous United States (CONUS), which provides wall-to-wall
annual maps of burned area at 30 m resolution (1984–2015). Validation is a critical component in
the generation of such remotely sensed products. Previous efforts to validate the BAECV relied on
a reference dataset derived from Landsat, which was effective in evaluating the product across its
timespan but did not allow for consideration of inaccuracies imposed by the Landsat sensor itself.
In this effort, the BAECV was validated using 286 high-resolution images, collected from GeoEye-1,
QuickBird-2, Worldview-2 and RapidEye satellites. A disproportionate sampling strategy was utilized
to ensure enough burned area pixels were collected. Errors of omission and commission for burned
area averaged 22 ± 4% and 48 ± 3%, respectively, across CONUS. Errors were lowest across the
western U.S. The elevated error of commission relative to omission was largely driven by patterns in
the Great Plains which saw low errors of omission (13± 13%) but high errors of commission (70± 5%)
and potentially a region-growing function included in the BAECV algorithm. While the BAECV
reliably detected agricultural fires in the Great Plains, it frequently mapped tilled areas or areas with
low vegetation as burned. Landscape metrics were calculated for individual fire events to assess the
influence of image resolution (2 m, 30 m and 500 m) on mapping fire heterogeneity. As the spatial
detail of imagery increased, fire events were mapped in a patchier manner with greater patch and edge
densities, and shape complexity, which can influence estimates of total greenhouse gas emissions and
rates of vegetation recovery. The increasing number of satellites collecting high-resolution imagery
and rapid improvements in the frequency with which imagery is being collected means greater
opportunities to utilize these sources of imagery for Landsat product validation.

Keywords: burned area; essential climate variable; fire; Landsat; QuickBird-2; RapidEye; validation;
Worldview-2

1. Introduction

The Global Climate Observing System (GCOS) program identifies fire disturbance as one of the
high priority Essential Climate Variables (ECV) [1]. Fire is a critical source of disturbance influencing
vegetation dynamics [2,3], carbon and nutrient cycling [4,5], greenhouse gas emissions [6,7], and
landscape heterogeneity [8,9]. The U.S. Geological Survey (USGS) has developed a Burned Area
Essential Climate Variable (BAECV) product for the conterminous United States (CONUS) which
capitalizes on the continuous record and moderate spatial resolution provided by the Landsat satellites
to provide wall-to-wall maps of burned areas across CONUS (1984–2015) at 30 m resolution [10].
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This product is meant to complement existing global burned area products (300 m to 1 km in
resolution), such as NASA’s Moderate Resolution Imaging Spectrometer (MODIS) burned area
products (2000–present), the MCD45 [11] and the MCD64 [12]. Providing a burned area record
for longer time spans at finer spatial resolutions can improve our ability to discern temporal trends [13],
relationships with climate and other drivers [14–16], as well as detect smaller fires and map fire
heterogeneity [17]. The BAECV was initially validated using an independent dataset also derived from
Landsat [18]. This initial validation approach allowed for the BAECV to be validated across a large
temporal and spatial extent, which provides valuable information on the algorithms performance and
stability. However, this type of validation does not allow for consideration of inaccuracies imposed
by the Landsat sensor itself, such as mixed pixels (burned and unburned cover types within a single
pixel) [19] or errors in the manual interpretation of the imagery due to its moderate spatial resolution.
The current study uses high-resolution commercial imagery collected across the CONUS to validate
the USGS’s Landsat BAECV (1984–2015).

Validation is a critical component in the generation of remotely sensed products that allows users
to decide when and how to utilize datasets, correctly interpret results, and provide feedback to improve
products [20,21]. The Committee on Earth Observation Satellites (CEOS), Land Product Validation
Subgroup (LPVS), which formed in 2000, has specified that validation should follow internationally
agreed upon validation best practices to measure accuracy and precision (standard error of accuracy
estimates) at comprehensive spatial and temporal scales [21]. Accuracy of existing global burned
area products is relatively low with documented errors of omission and commission for burned areas
ranging 51% to 93%, and 42% to 94%, respectively [22–24]. This is due to the tremendous amount
of spectral diversity introduced when attempting to map burned areas across diverse vegetation
types, fire combustion levels (e.g., ash, char, soot), and burn severities (e.g., ground vs. crown fires).
Coarse resolution (300 m to 1 km) burned area products are most commonly validated with Landsat
imagery [22–25]. Similarly, efforts to map forest disturbance or burned area using Landsat at a regional
scale, also typically rely on Landsat imagery for validation and use manual interpretation of the
validation imagery to improve the quality of the reference dataset [26–28]. This is largely because
to date it has been considered challenging, and potentially prohibitively costly, to acquire enough
incidentally collected high-resolution imagery covering burned areas, across adequate numbers of
spatial locations and years to sufficiently validate a large disturbance dataset [26,27]. Efforts to map
a single or several fire events with Landsat often rely on fire perimeter datasets for validation (e.g., GPS
delineated perimeters) [29–31], but high-resolution imagery has also been used for validation [32,33].
In addition, high-resolution imagery (e.g., IKONOS and GeoEye-1) has been used to directly map
burned area and burn severity [34–38] or been paired with Landsat imagery to improve efforts to map
burned area and burn severity [39,40].

Validation efforts often focus on pixel-based approaches, as they can provide easily interpretable
errors of omission and commission to summarize the accuracy of a dataset [21]. However, landscape
metrics have also begun to be reported for burned area products [24], and patch scale metrics, such
as fire size distribution, have been calculated for global burned area products [41,42]. A number of
studies have shown that measurements informing the spatial pattern of fires can both complement our
understanding of fire regimes [8,43,44] and inform post-fire dynamics [45–47]. At broad spatial and
temporal scales, the patterns and abundance of fires are controlled by continental-scale variation in
climate and long-term patterns in vegetation type and successional stage [48–50]. However, at finer
spatial and temporal scales, spatial heterogeneity in fire occurrence, extent or severity can be attributed
to variation in fuels, ignition sources, topography, weather, and barriers to fire spread [44,51,52]. For
example, fire orientation has been successfully related to locally dominant wind directions, which
can inform efforts to place fuel breaks on the landscape [8,53,54]. An understanding of the controls
on burned area extent across space and time is critical to anticipating shifts in fire regimes under
climate change [55]. Detecting these finer-scale relationships, however, requires burned area inputs
with adequate detail regarding within fire heterogeneity.
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This study sought to validate the USGS’s Landsat BAECV (1984–2015) using an independent
dataset derived from close to 300 commercial high-resolution images, collected from QuickBird-2,
Worldview-2, GeoEye-1 and RapidEye across CONUS, between 2003 and 2015. Our research
questions included:

(1) How accurate is USGS’s BAECV across diverse ecoregions of the CONUS?
(2) How does the spatial resolution of imagery influence the spatial characteristics and the within

fire heterogeneity of mapped fires?
(3) How does a validation using commercial high-resolution imagery compare with and complement

a Landsat-based validation of the BAECV?

2. Methods

2.1. BAECV Product Algorithm

The BAECV algorithm is explained in detail in Hawbaker et al. [10]. The product is provided as
an annual composite of all burned area identified across CONUS at 30 m resolution, and a minimum
fire size of 4.05 ha (45 pixels) (https://doi.org/10.5066/F73B5X76). The algorithm used a supervised
machine-learning approach and relied on the Monitoring Trends in Burn Severity (MTBS) data as
the primary source of observed burned area to train the algorithm. Of the 32 years of Landsat 4, 5,
and 7 data (1984–2015), corresponding MTBS data were available for all except the two most recent
years (1984–2013) at the time of production (30 years). Training data points were derived from 24 of
the years, while the remaining 6 years (1988, 1993, 1998, 2003, 2008 and 2013) were retained for
testing and validation. The BAECV algorithm used a suite of predictor variables calculated from
a dense time series of Landsat data including both single-scene, pre-fire surface conditions (e.g., 3-year
lagged means and standard deviations), and change from pre-fire surface conditions. These variables
were used as the inputs to train a gradient-boosted regression model [56] that uses a sequence of
classification and regression tree models [57] to predict the probability that a pixel has burned in
any given Landsat image. Burn classification images were generated by applying thresholds and
a region-growing method to the burn probability images so that both pixels with very high burn
probability (≥98%) and adjacent pixels with high burn probability (≥95%) were classified as burned.

2.2. High-Resolution Imagery Sampling Design

Burned area is a spatially rare and temporary cover type. The BAECV classified 0.4% of the
CONUS as burned each year (1984–2013) [10]. Relying on high-resolution imagery to validate a rare
cover type presents a unique sampling challenge. A high-resolution image (~256 to 324 km2) is <1% as
large as a Landsat image (~33,300 km2 or 185 km by 180 km). A common approach is to use stratified
random sampling to select image locations informed by ancillary data, such as fire density and biome,
but without prior confirmation regarding fire presence or absence [22]. Although this approach may
be adequate when using Landsat imagery, with high-resolution imagery it is problematic because:
(1) there is no guarantee that a high-resolution image has been collected for a specific location and
date; and (2) we would be unlikely to identify enough burned area without using an exceedingly large
number of images. Given the labor-intensive nature of processing and manually editing classifications
from high-resolution imagery, this is not feasible. Because of the shortcomings of random sampling for
validating rare events, we employed disproportionate sampling, which increases the proportion of
samples collected within the rare change, in this case unburned to burned [19,58]. Disproportionate
sampling can be achieved by focusing on areas known to be experiencing high rates of fire events via
domain knowledge [59]. The advantage of this approach is increased precision in estimating burned
area accuracy and more efficient resource utilization in deriving reference data [19].

High-resolution imagery containing burned patches across CONUS were found primarily using
DigitalGlobe’s (https://www.digitalglobe.com/) imagery database and secondarily Planet’s (https:
//www.planet.com/) imagery database, both of which are searchable by image location or time-frame,

https://doi.org/10.5066/F73B5X76
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but not by features found within the imagery. We used MTBS and MODIS fire point datasets (MCD14)
to identify “hot spots” of burned areas, or regions that frequently burned, and manually searched
through imagery collected over these locations looking for imagery containing recently (same-year)
burned patches. We selected additional search locations to stratify images geographically and across
ecoregions to the best of our ability. This approach allowed us to collect enough samples of true burned
area to: (1) test for errors of omission in the BAECV; and (2) maximize our precision in estimating
burned area accuracy. To ensure that we also adequately documented the potential for errors of
commission, or the BAECV mapping fires where the high-resolution images did not, we paired each
high-resolution image containing a burned area with a nearby image, collected on a similar date, with
similar vegetation types, containing no burned area. In cases in which such imagery was not available,
an image with similar vegetation types, but a different date or year was used instead. We recognize
that there may be inherent bias in where high-resolution images were collected over burned areas.
For instance, commercial enterprises may be more likely to collect imagery near developed areas as
opposed to highly remote locations. There is also inherent bias in the probability of us finding burned
area imagery. For instance, larger burned areas are more easily recognized when searching through
imagery databases than small burned patches.

We processed a total of 286 high-resolution images stratified across four major ecoregions within
CONUS including the Arid West (45 images containing a burn, 45 with no burn), the Mountain West
(33 images containing a burn, 33 with no burn), the Great Plains (34 images containing a burn, 34 with
no burn), and the East (31 images containing a burn, 31 with no burn) (Figure 1). The images were
distributed between GeoEye-1 (n = 9), QuickBird-2 (n = 172), Worldview-2 (n = 73) and RapidEye
(n = 37). The images were also distributed between 2003 and 2015 (Table 1). For images in which the
burn occurred or the dominant land cover type, as defined by the 2011 National Land Cover Database
(NLCD) [60], was grassland, agriculture or hay/pasture, the gap between the high-resolution image
and Landsat was limited to 5 days or less. For other cover types, we can expect evidence of the burn
to persist longer; in these cases the closest cloud-free Landsat date to the date of the high-resolution
image was used. The mean date gap between the high-resolution and Landsat image dates across
CONUS was 8 days (Table 2). A complete list of the high-resolution and Landsat image pairs is shown
in Table A1 in Appendix A.

Table 1. Distribution of high-resolution images used to validate the U.S. Geological Survey’s Burned
Area Essential Climate Variable (BAECV) by year.

Year Arid West Mountain West Great Plains East Total Number of Images

2003 16 8 6 0 30
2004 0 2 6 1 9
2005 12 1 0 6 19
2006 7 9 5 0 21
2007 0 3 0 10 13
2008 12 0 0 7 19
2009 11 4 6 14 35
2010 4 15 2 0 21
2011 9 12 6 5 32
2012 10 7 1 6 24
2013 1 5 9 0 15
2014 8 0 15 13 36
2015 0 0 12 0 12
Total 90 66 68 62 286
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Table 2. Accuracy statistics for the U.S. Geological Survey’s Burned Area Essential Climate Variable
(BAECV) by ecoregion and for the conterminous United States (CONUS). Errors of omission and
commission are presented for burned area only. Standard errors are shown in parentheses.

Accuracy Statistic Arid West Mountain West Great Plains East CONUS

Omission Error (%) 14 (4) 22 (3) 13 (13) 46 (3) 22 (4)
Commission Error (%) 36 (6) 39 (5) 70 (5) 48 (5) 48 (3)
Overall Accuracy (%) 97 (1) 98 (1) 99 (2) 97 (2) 97 (1)
Dice Coefficient (%) 73 (6) 69 (3) 44 (6) 53 (4) 61 (3)

Relative Bias (%) 34 (19) 27 (13) 194 (27) 3 (13) 66 (10)
Landsat-Based Omission Error (%) 31 (6) 41 (7) 62 (9) 67 (8) 42 (6)

Landsat-Based Commission Error (%) 24 (3) 32 (5) 57 (9) 47 (5) 33 (3)
Number of High Res Images 90 66 68 62 286
Mean Image Date Gap (days) 8.8 ± 0.9 14.9 ± 1.5 2.4 ± 0.9 7.1 ± 0.9 8.4 ± 0.6
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Figure 1. (A) The distribution of area classified as burned by the Burned Area Essential Climate
Variable (BAECV) product between 1984 and 2015, and (B) the distribution of the high-resolution
images used to validate the BAECV relative to a modified version of the U.S. Environmental Protection
Agency Level I ecoregions. High-resolution images containing at least one burned area (n = 143) are
shown in relation to images containing no burned areas (n = 143), burned area points are shown on top
so some not burned image locations are not visible.
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2.3. High-Resolution Reference Dataset

The QuickBird-2, GeoEye-1 and Worldview-2 images were resampled and delivered by
DigitalGlobe at 2 m resolution. The RapidEye imagery was resampled and delivered by Planet
at 5 m resolution. Details regarding differences in the satellite characteristics, relative to Landsat,
are shown in Table 3. All images were re-projected to a consistent projection prior to analysis and
comparison. In addition, each image pair was checked for potential georeferencing-related errors prior
to comparison. The high-resolution images were georeferenced to the Landsat image as necessary.
The high-resolution imagery was processed in both PCI Geomatica and ENVI. Two programs were
used due to changes in the availability of the atmospheric correction modules, mid-project. In PCI
Geomatica, the imagery was atmospherically corrected and converted to ground reflectance using
ATCOR (the Atmospheric Correction module) [61]. In ENVI imagery was atmospherically corrected
and converted to ground reflectance using FLAASH [62,63]. In both programs, burned area was
identified using maximum likelihood supervised classification, in which each image was trained on
manually selected “burned” and “unburned” polygons. A sieve filter, in PCI Geomatica, and a low
pass filter, in ENVI, were applied to reduce noise in the output images with the window size and
pixel aggregation varying based on the amount of noise produced by each classification. Most images
were filtered using a 5 × 5 window size. Burned area outputs were then manually edited using visual
interpretation of the high-resolution imagery as well as ancillary datasets (e.g., MTBS, MODIS active
fire detections) to improve confidence in edits, as relevant.

Table 3. Characteristics of satellites used to derive the reference dataset in relation to the characteristics
of the Landsat sensors used to derive the Burned Area Essential Climate Variable (BAECV). Landsat
TM: Landsat Thematic Mapper; Landsat ETM+: Landsat Enhanced Thematic Mapper Plus.

Platform
Data

Availability
(years)

Spatial
Resolution

(m)

Data Collection
Type

Image
Extent

Spectral
Range (µm)

Spectral
Resolution
(# of Bands)

Sponsor, Country

QuickBird-2 2001–2014 2 On-Demand 18 km 0.43–0.92 4 DigitalGlobe, U.S.

GeoEye-1 2008–Present 2 On-Demand 15 km 0.45–0.92 4 DigitalGlobe, U.S.

Worldview-2 2009–Present 2 On-Demand 16 km 0.4–1.04 8 DigitalGlobe, U.S.

RapidEye-1–5 2008–Present 5

On-Demand
(2008–2013),

Continuous 1

(2014–present)
(1 to 24 day

revisit)

25 km 0.44–0.85 5 Planet, U.S.

Landsat TM 1984–2011 30 Continuous
(16 day revisit) 185 km 0.45–2.35;

10.4–12.5 7 NASA, U.S.

Landsat
ETM+

1999–2003,
2003–Present

(scan-line
corrector off)

30 Continuous
(16 day revisit) 185 km 0.45–2.35;

10.4–12.5 8 NASA, U.S.

1 Continuous during growing season.

Commercial high-resolution satellites lack a short-wave infrared (SWIR) band, which has been
found to be useful in detecting burned areas [64]. However, we found that by training and classifying
images individually we were able to successfully distinguish burned area from non-burned area using
both four-band satellites, such as GeoEye-1 and QuickBird-2, five-band satellites, such as RapidEye,
as well as eight-band satellites, such as Worldview-2. Variation in biomass combustion levels within
a given image (e.g., ash, char, soot) can result in spectral diversity across areas classified as burned.
This potential source of error was minimized by classifying multiple classes of burned area as needed
based on combustion levels, then combining these classes into a single burned area class. Another
challenge regarding using commercial high-resolution satellites is that it is often not feasible or possible
to calculate burned area from pre- and post-fire image pairs. For most fires burned area extent from
a single post-fire image was visually and spectrally interpretable, however for low-severity surface
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fires it is possible that a pre-fire image would have improved the identification of these areas. The
largest source of error in mapping burned area with high-resolution images was in mapping low
severity or ground fires in which tree crowns remained green. Because of the fine spatial resolution,
individual trees or small clusters of trees were often classified as unburned, artificially elevating within
fire heterogeneity. This source of error was reduced by filtering and manual editing where feasible.
This approach removed single trees classified as unburned within a continuous burned area, but
left larger, more continuous patches of green trees classified as unburned. This approach retained
unburned patches, but may have underestimated low, severity surface fires.

2.4. Pixel-Based Validation of the BAECV

The annual BAECV product represents a temporal aggregation of individual Landsat images.
If an individual pixel was classified as burned in any of the Landsat images from that year, it was
classified as burned within the annual BAECV product. The high-resolution images, in contrast,
represented burned area extent at a specific point in time and were therefore not directly comparable to
the annual BAECV product. Because of this, the high-resolution images were compared to the closest
Landsat image processed by the BAECV. This date was sometimes prior to and sometimes following
the high-resolution image collection date. In a few cases Landsat did not map the burned area in any of
the nearby dates, but the fire was mapped in the annual burned area raster. In these cases, the annual
burned area raster was compared to the classified high-resolution image. The BAECV (30 m resolution)
was up-sampled to match the resolution of the reference dataset (2 m resolution) for a pixel to pixel
comparison [22]. This approach allowed for no loss of information provided by the finer-resolution
reference imagery. The images classified from RapidEye (5 m resolution) were also up-sampled to
2 m resolution for consistency purposes. Accuracy metrics calculated included overall accuracy,
omission error, commission error, Dice coefficient, and relative bias. Omission and commission errors
were calculated for the category “burned” [22,25]. The Dice coefficient is the conditional probability,
presented as a percentage, that if one classifier (product or reference data) identifies a pixel as burned,
the other one will as well, and therefore integrates omission and commission errors [65,66]. The relative
bias provides the proportion, presented as a percentage, that burned area is under or overestimated
relative to the total burned area of the reference product [22].

Spatial autocorrelation in accuracy assessments is introduced when reference datasets are created
over continuous units in space (e.g., an image). Reporting standard errors from pixel-counts can
therefore underrepresent error because of the influence of spatial autocorrelation on error [67].
To account for the influence of stratification and clustering, the pixel-level accuracy metrics were
calculated for each high-resolution image, individually. Standard errors, reported for accuracy metrics
by ecoregion and CONUS, were then estimated to account for the stratified sampling design. The general
estimator for each accuracy metric (R̂) was defined as the stratified combined ratio estimator [68]:

R̂ =
∑H

h=1 Khyh

∑H
h=1 Khxh

(1)

where H is the number of strata, Kh is the size of stratum h, yh and xh are the sample means of yt and
xt of stratum h, and yt and xt are the numerator and denominator of each accuracy metric equation,
respectively [22]. The estimated variance of R̂ was in turn defined as:

V̂(R̂) =
1
ˆ̂X2

H

∑
h=1

K2
h

kh(kh − 1) ∑
t∈h

d2
t (2)

where kh is the number of images sampled in stratum h and X̂ and dt are defined as:

X̂ =
H

∑
h=1

Khxh (3)
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dt = (yt − yh)− R̂(xt − xh) (4)

Lastly, the standard error was calculated as:

SE =
√

V̂(yst) (5)

Accuracy metrics were presented by ecoregion the distribution of which is shown in Figure 1.
Ecoregions were based on a modified version of the U.S. Environmental Protection Agency’s Level I
ecoregions and included the Mountain West, Arid West, Great Plains and East [69] (Figure 1). The
relative abundance of NLCD land cover types within each of the ecoregions are shown in Table 4.
The Arid West, in the southwestern United States, is dominated by shrub/scrub, while the Mountain
West, in the northwestern United States, is dominated by evergreen forest and shrub/scrub. The
Great Plains, in the central United States, is dominated by grasslands and cultivated crops, and
the East, extending across the eastern part of the United Sates, is the most diverse, dominated by
deciduous forest, evergreen forest, pasture/hay, and woody wetlands (Table 4). Accuracy metrics
were scaled from ecoregions to CONUS using our current understanding regarding the relative
distribution of burned area by ecoregion. This distribution was averaged from three independent
sources for burned area: (1) the USGS Geospatial Multi-Agency Coordination (GeoMAC) (2000–2015);
(2) MTBS (1984–2014); and (3) MODIS MCD45 (2000–2015) (Table 5). GeoMAC is a mapping application
designed to allow fire managers to access online maps of current fire locations and perimeters across
the United States. The perimeters represent verified fires where U.S. federal resources or agencies
were involved, but under-map fires that occurred on private land (https://www.geomac.gov/). The
averaged proportion of burned area by ecoregion was used to weight the ecoregion accuracy metrics
to calculate CONUS-based accuracy metrics. Linear regressions were also performed, comparing the
amount of burned area mapped by the reference dataset to the amount of burned area mapped by the
BAECV product (ha per image).

Table 4. The relative abundance of National Land Cover Database (NLCD) land cover types across the
conterminous United States (CONUS) and within each of the four ecoregions modified from the U.S.
Environmental Protection Agency Level I ecoregions.

NLCD Land Cover Types (2006) CONUS
(km2)

CONUS
(%)

Arid West
(%)

Mountain
West (%)

Great Plains
(%)

East
(%)

Deciduous Forest 876,257 12.1 0.4 3.9 3.0 26.7
Evergreen Forest 934,123 12.9 9.6 50.8 1.7 9.9

Mixed Forest 161,861 2.2 0.4 1.9 0.1 4.8
Shrub/Scrub 1,746,336 24.2 64.8 23.2 12.4 4.0

Grasslands/Herbaceous 1,176,276 16.3 9.3 10.7 36.9 2.7
Pasture/Hay 537,512 7.4 1.6 1.8 6.7 11.9

Cultivated Crops 1,252,998 17.3 5.4 1.3 30.4 16.0
Woody Wetlands 312,431 4.3 0.4 0.8 1.0 9.5

Emergent Herbaceous Wetlands 105,014 1.5 0.4 0.5 1.3 2.0
Other (developed, barren, open water) 121,105 1.7 7.7 5.1 6.5 12.5

Table 5. The distribution of total burned area by ecoregion using three independent sources of data.
Mtn: Mountain, MODIS: Moderate Resolution Imaging Spectroradiometer, MTBS: Monitoring Trends
in Burn Severity, GeoMAC: Geospatial Multi-Agency Coordination.

Source Arid West (%) Mtn West (%) Great Plains (%) East (%)

MODIS (MCD45) (2000–2015) 30 9 44 17
MTBS (1984–2014) 15 22 20 43

GeoMAC (2000–2015) 50 34.5 10.5 5
Average 31.5 22 25 21.5

https://www.geomac.gov/
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2.5. Patch-Based Evaluation of the BAECV

Landscape metrics were calculated for each individual fire event that were mapped by both
the high-resolution imagery and the BAECV (n = 91). This sample size was smaller than the
number of images containing a burn (n = 143) because some fire events extended across multiple
high-resolution images and agricultural burns were excluded as these tend to be rectangular and
uniform in shape. For fire events that were also mapped by MODIS (MCD45), landscape metrics
were calculated for the MODIS version of the fire event as well. The inclusion of MODIS was meant
to help contextualize potential observed differences between the BAECV and the high-resolution
burned area. The burned area as mapped by the high-resolution imagery, Landsat and MODIS were
clipped to the high-resolution image extent. Burned areas classified from RapidEye satellites were
up-sampled to 2 m, for consistency purposes, while Landsat and MODIS (MCD45) were run at 30 m
and 500 m, respectively. Landscape metrics were calculated using FRAGSTATS [70]. Landscape metrics
were selected that have been used in fire-related studies and that characterize the areal distribution,
configuration and arrangement of burned patches for a given fire event. These metrics included:

1. Patch Density [9,71]
2. Area-Weighted Mean Patch Size [9,43,52]
3. Area-Weighted Mean Perimeter-Area Ratio [24]
4. Edge Density [71]
5. Landscape Shape Index [8,9,71].

Patch Density (PD) equals the number of burned area patches divided by the total landscape
area. PD is maximized when every cell is a separate patch, but since it accounts for landscape area,
is ultimately constrained by the pixel size [70]. Area-Weighted Mean Patch Size (AM) is the sum of
the area of each burned patch multiplied by the proportional abundance of the patch, so that larger
patches are weighted more heavily. The perimeter-area ratio is a simple measure of shape complexity.
The Area-Weighted Perimeter-Area Ratio (PARA) is calculated the same as AM, except that instead of
patch area, the ratio of the patch perimeter to patch area is used. Edge Density (ED) equals the total
length of edge (or perimeter) of burned patches divided by the total landscape area and reflects both
the relative abundance of burned area as well as the aggregation of burned patches. The Landscape
Shape Index (LSI) provides a measure of burn patch aggregation and equals the total perimeter of all
burned area patches, divided by the minimum total perimeter for a maximally aggregated class, so
that an LSI of 1 occurs when a landscape consists of a single square patch [70]. Paired t-tests were used
to evaluate if the landscape metrics of the fire events varied significantly between the high-resolution
imagery, Landsat and MODIS. Data were normalized using the log function and found to comply with
normal data distributions using the Shapiro–Wilks test.

3. Results

3.1. Pixel-Level Validation of the BAECV

Overall accuracy was high (≥97%) across all four ecoregions due to the relative ease of identifying
unburned as unburned and the relatively rare occurrence of burned area, even when disproportionately
sampling images containing a burned area (Table 2). Errors of omission and commission for burned
area when averaged across CONUS were 22% and 48%, respectively. Errors were unevenly distributed
across the ecoregions. Errors were relatively low in the Arid West (14% and 36% omission and
commission error, respectively) and Mountain West (22% and 39% omission and commission error,
respectively), while errors of commission were highest in the Great Plains (70% commission error)
and high but balanced in the East (46% and 48% errors of omission and commission, respectively)
(Table 2). Despite the frequency of small grassland and agricultural fires in the Great Plains, errors of
omission were very low (13% error of omission). Most fires in the East occur in forest, but fires are
also common within agricultural and wetland areas, two cover types which are particularly difficult to



Remote Sens. 2017, 9, 743 10 of 24

map fire within. Wetland areas are difficult because depending on the water level, a burn event can
result in a change from vegetated to open water, while agricultural areas experience frequent shifts
between vegetated and non-vegetated. The BAECV had a consistent bias in over-estimating burned
area extent in the other three ecoregions (Great Plains, Arid West and Mountain West). Across the
Arid West and Mountain West the BAECV moderately overestimated burned area (relative bias of 34%
and 27%, respectively), while in the Great Plains the BAECV greatly overestimated burned area (194%
relative bias). Despite a consistent bias in the BAECV over-estimating burned area extent, relative to
the high-resolution imagery used as reference data, the correlation between burned area identified by
the reference dataset and the BAECV was strong (r2 = 0.83, p < 0.01) (Figure 2).
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Figure 2. The correlation between the amount of burned area identified by the reference dataset and
the amount of burned area identified by the Burned Area Essential Climate Variable (BAECV) across
the conterminous U.S. (CONUS) where each point represents a high-resolution image. RMSE: root
mean square error.

3.2. Landscape Metrics Comparison

For non-agricultural fires, the BAECV mapped 91 of 93 fire events identified within the
high-resolution imagery, meaning that much of the reported error was due to disagreement regarding
the mapping of within-fire heterogeneity. An example of one such fire event is shown in Figure 3.
For each fire event we calculated the ratio of the total area mapped as burned by the high-resolution
imagery compared to the total area mapped as burned by the BAECV. Ratios ranged from 0.005 (large
commission by BAECV) to 22.5 (large omission by BAECV) with a median ratio value of 0.79, meaning
that the BAECV on average, mapped a burned area 21% larger than the high-resolution imagery did.
Several examples comparing the reference burned area and BAECV are shown in Figure 4. In each of
the examples, the disagreement was regarding mapping within-fire heterogeneity. The high-resolution
imagery tended to be more conservative, mapping fires in a more “patchy” manner relative to the
BAECV. These examples were selected to provide visual examples of what CONUS-scale error rates
look like for individual fire events (Figure 4).
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Figure 3. An example of differences in the spatial characteristics for a fire as shown by
(A) a Worldview-2 image in natural color composite, and as mapped by (B) Worldview-2, (C) the
Landsat Burned Area Essential Climate Variable (BAECV) product, and (D) the Moderate Resolution
Imaging Spectroradiometer (MODIS) MCD45 burned area dataset.

Using FRAGSTATS, we observed significant differences in landscape metrics when fire events
were mapped at each of the three spatial resolutions (2 m, 30 m and 500 m) (Table 5). As the resolution
became finer, patch and edge density increased significantly and the area-weighted mean patch size
decreased significantly as a fire event was mapped using more patches and became less aggregated.
The shape complexity, evaluated by the Landscape Shape Index, increased significantly, and we
saw more edge and less internal area, or more disaggregation or dispersal, as indicated by higher
area-weighted perimeter-area ratios (Table 6).

Table 6. Landscape metrics calculated per burned area in FRAGSTATs for fires mapped by both the
high-resolution and Landsat imagery. Agricultural field burns were excluded. Twenty-four of the 91
burn events were not identified by the Moderate Resolution Imaging Sepectroradiometer (MODIS)
MCD45 burned area dataset. Significant differences (p < 0.01) between groups (high-resolution, BAECV,
MCD45) are shown using different superscript numbers as determined from pair-wise t-tests. BAECV:
Burned Area Essential Climate Variable.

Imagery Source Patch Density Edge Density Landscape
Shape Index

Area-Weighted
Mean Patch Size

Area-Weighted
Perimeter-Area

Ratio

High-resolution 30.1 ± 3.2 1 204.0 ± 21.4 1 70.8 ± 7.4 1 1293.3 ± 136.5 1 843.4 ± 88.5 1

BAECV (Landsat) 0.25 ± 0.03 2 37.5 ± 3.9 2 11.1 ± 1.2 2 3463.1 ± 365.4 2 134.1 ± 14.1 2

MCD45 (MODIS) 0.02 ± 0.007 3 2.7 ± 0.3 3 1.9 ± 0.2 3 6913.4 ± 854.1 3 20.1 ± 2.5 3
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with finer spatial resolution reference imagery. Although QuickBird-2 was launched in 2001, imagery 
collection appears limited until 2003 onward. Validating with high-resolution imagery, however, 
faces several challenges. A traditional stratified sampling strategy is not feasible because of the: (1) 
non-regular spatial and temporal data collection of high-resolution imagery; (2) small image extent 
relative to Landsat (<1% the size); and (3) burned area occurring as a rare cover type. To overcome 
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Figure 4. Comparisons between the reference dataset and the Landsat Burned Area Essential Climate
Variable (BAECV) to demonstrate the visual effect of error rates. (A) The QuickBird-2 image was
collected on 13 August 2003, the Landsat image was collected seven days prior. Error of omission
and commission was 20% and 42%, respectively. (B) The four QuickBird-2 images were collected on
31 August 2005, the Landsat image was collected two days prior. Error of omission and commission
was 19% and 65%, respectively. (C) The GeoEye-1 image was collected on 15 September 2009, and
the Landsat image was collected six days later. Error of omission and commission was 28% and 39%,
respectively. The high-resolution images are shown in false color where live vegetation is red.

4. Discussion

Emerging Landsat science products are challenging to validate as no finer resolution source of
imagery has been regularly collected over the entire Landsat 4, 5, and 7 record (1984 to present).
However, commercial, high-resolution imagery has now been collected frequently enough for 12 of
the 32 years of the BAECV record (2003–2015) to begin allowing for validation of Landsat products
with finer spatial resolution reference imagery. Although QuickBird-2 was launched in 2001, imagery
collection appears limited until 2003 onward. Validating with high-resolution imagery, however,
faces several challenges. A traditional stratified sampling strategy is not feasible because of the:
(1) non-regular spatial and temporal data collection of high-resolution imagery; (2) small image extent
relative to Landsat (<1% the size); and (3) burned area occurring as a rare cover type. To overcome
these challenges, we used a disproportionate sampling strategy to ensure that enough burned pixels
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were collected. We also integrated images lacking burned areas to ensure our ability to test for errors of
commission. Using this approach allowed for a validation assessment of the BAECV, particularly when
complemented by a Landsat-based validation that can provide a validation over greater temporal and
spatial areas relative to high-resolution imagery [18].

The accuracy of burned area maps and products often depends on the size and diversity of the
area mapped. When burned area algorithms are optimized for site level performance, the accuracy can
exceed 95% [29,72]. As the target area expands, accuracy often begins to decrease (e.g., 15% to 30%
error for burned area) due to variance imposed by local factors [33,73,74]. Disturbances (fires, clearcut
and insect mortality) have been mapped with Landsat imagery across forested portions of CONUS.
The corresponding validations relied on manual interpretation of Landsat images and calculated
errors of omission and commission averaging 40–45% and 20–30%, respectively [26,27]. Validation for
these efforts was supplemented using Forest Service Inventory and Analysis (FIA) plots and showed
errors of omission and commission averaging 36% (0 to 100%) and 64% (26 to 100%), respectively.
Boschetti et al. (2015) mapped burned areas from Landsat for a single year across much of the western
United States. Relative to MTBS perimeters, the burned area extent showed 51% omission error and
14% commission error. The spectral diversity within burned patches increases as the vegetation and
cover type diversity increases, as can be expected for national and global scale efforts. This makes
achieving high levels of accuracy at these larger spatial extents considerably more challenging. At the
global scale, accuracy of existing global burned area products, derived from coarser resolution imagery,
show relatively weak accuracy. Errors of omission for such products have been documented to range
from 51% to 93% for omission error and from 36% to 94% for commission error [23,24]. Error is even
higher for specific vegetation types. For example, although the MODIS burned area product (MCD45)
performed well relative to other global burned area products, it performed poorly in temperate forest
(99% omission, and 95% commission), which is a major biome across CONUS (Figure 1) [23].

Validating the BAECV with high-resolution imagery, we documented errors of omission and
commission that averaged 22% and 48%, respectively, across CONUS. These error rates are comparable
to a previous BAECV validation effort using manually edited Landsat images, which documented
errors of omission and commission that averaged 42% and 33%, respectively, across CONUS [18].
The error rates for the Landsat BAECV were lower than most accuracy statistics reported for coarser
resolution global burned area products and showed lower rates of omission but higher rates of
commission than mapping efforts using Landsat imagery but constrained to forested cover types.
In the Landsat-based validation, the BAECV errors of omission exceeded errors of commission in
all four ecoregions [18]. In this validation effort, however, errors of commission exceeded errors of
omission in all four ecoregions. The difference in error distribution can be potentially attributed
to: (1) region-growing functions included in generating both the BAECV [10] and Landsat reference
dataset (using the program Burned Area Mapping Software (BAMS)) [73]; and (2) an intrinsic ability to
map more fire heterogeneity as the spatial resolution of the input imagery becomes finer. A potential
source of this increased patchiness or fire heterogeneity mapped by the high-resolution imagery (e.g.,
Figure 4) could have been live crowns mapped incorrectly as unburned in areas with surface burns,
which would have incorrectly elevated errors of commission for the BAECV; however, much of the
increased heterogeneity can be attributed to the high-resolution images correctly mapping bare soil,
rock and unburned patches of vegetation within the burn perimeter as unburned. Many of these
patches within the BAECV were classified as burned when a region-growing function was applied to
areas within and near the burned area [10].

One of the potential factors influencing the quality of the high-resolution burned area extent
was mapping burned area extent from single images instead of pre- and post-fire image pairs, as is
common when mapping burned area with Landsat imagery. Some sources of high-resolution imagery
have begun to collect imagery at regular intervals using networks of micro-satellites (e.g., Dove and
RapidEye). This trend will make it easier, in the future, to map burned area extent from pre- and
post-image pairs. However, an added complication is the need for pre- and post-fire image pairs
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to show consistent and highly accurate positional accuracy in order to ensure that the same pixels
are being subtracted from one another. While this requirement also holds for Landsat imagery, the
resolution of Landsat (30 m) relative to Worldview-2 (2 m) for example, necessitates a much higher
positional accuracy for high-resolution imagery relative to Landsat imagery. In working extensively
with multiple sources of high-resolution imagery we have found that this area of image quality needs
improvement. For example, DigitalGlobe’s Standard Level 2A imagery products use a 90 m DEM
in georeferencing, which resulted in large inaccuracies in mountainous areas and required extensive
manual georeferencing on our end so that the high-resolution image could be compared to the BAECV.
A potential work-around is to acquire Level 1 imagery products (prior to georeferencing) and apply
a 10 m DEM; however even this DEM resolution may not be adequate to compare two 2 m resolution
images. This source of error will need to be reduced before pre- and post-fire image pairs can be used
to map burned area from high-resolution imagery.

One of the most prominent differences between the previous validation effort [18] and the
high-resolution based validation effort was in the Great Plains. In the previous effort we saw high
errors of both omission error and commission error for burned area (63% and 59%, respectively);
in contrast, in this analysis we observed high rates of commission error for burned area (70%), but very
low rates of omission error for burned area (13%). In a visual assessment of product-reference image
pairs within the region, we found that the BAECV reliably detected and mapped small agricultural
fires, but frequently mapped tilled areas or areas with low vegetation as burned. This is shown in
Figure 5, where an area with little live vegetation but no clear burn signal (purple circle) was classified
as burned by the BAECV but not by the RapidEye-3 image. This error was common and resulted in
an over-estimation of burned area across the Great Plains. However, we note that the Landsat collection
interval (8–16 days) relative to the persistence of a burn signal following a grassland or agricultural
fire event also likely resulted in substantial omission errors for the BAECV across the Great Plains,
meaning the true bias of the BAECV total burned area across the Great Plains remains unknown.

One of the greatest challenges of mapping agricultural fires is the lack of training data and our
limited ability to visually distinguish burned from bare soil. MODIS active fire points, when present,
can help confirm that fire occurred in the area but the spatial uncertainty due to the spatial resolution
of MODIS makes it challenging to confidently attribute active fire points to a specific field. The equal
distribution of error between omission and commission when comparing the BAECV and the Landsat
reference dataset suggested that both the BAECV and the reference dataset struggled to appropriately
distinguish burned from tilled or low vegetation soil. The difficulty for the BAECV and Landsat
reference dataset may have been exacerbated by change-detection approaches. Given the frequent
changes in site condition (green vegetation, non-photosynthetic vegetation, burned, tilled) areas can
show spectral change not related to a fire event. Even visually interpreting high-resolution imagery
was challenging. In Figure 6, we followed a small sub-section of an agricultural area from 5 March to
13 April 2016 using the RapidEye satellites. Over the 39 days, we can see several fields change visually,
and it was not always clear, given a single image, as to the current state or trajectory of a given field.

Another major challenge in validating with high-resolution imagery was the variable date gap
between the date the high-resolution image was collected and the date the Landsat image was collected.
A close date match between the high-resolution images and the Landsat images was critical to minimize
false error due to changes in land condition (e.g., new fires occurring, vegetation recovery) between
the product and reference dataset. The mean image date gap across comparisons was eight days
(Table 2), but in some cases the gap was larger. It was time-consuming to find enough high-resolution
images with burned areas visible within the image. Although Landsat images were typically available
every eight days for 2003 to 2011, as Landsat TM data collection ended in 2011, only BAECV images
processed from Landsat ETM+ with scan line off were available for 2012–2015 (every 16 days). The
BAECV has not yet incorporated Landsat-8 imagery. Cloud cover also frequently increased the time
before an image was available. Figure 7 shows two fire events mapped using Worldview-2 imagery
in areas dominated by a mix of forest, scrub and grassland relative to the two closest Landsat date
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matches (−38 and −35 days, respectively, and +10 and +13 days, respectively). In both cases, the
burned area extent as mapped by BAECV shrank between the two dates, likely due to vegetation
regrowth (e.g., grasses and herbaceous plants), while the Worldview-2 burned area extent represented
a mid-point both in time as well as burned area extent between the two BAECV dates (Figure 7).
These examples demonstrate potential false error due to a time gap between the product and reference
datasets. In the Arid West and Mountain West, we can expect that the primary source of false error
will be due to vegetation recovery; however, in the Great Plains, it is common for multiple small
agricultural and grassland fire events to occur within a given high-resolution image. This meant that
new fires occurring could also present false errors. In Figure 5, a yellow circle shows an agricultural
fire that occurred after the Landsat image was collected (DOY 120), but before the RapidEye-3 image
was collected (DOY 122), so that the burn was classified as a false error of omission in the BAECV.
To balance having enough image comparisons with the need to minimize false sources of error, we
applied a maximum date gap of five days to images which were dominated by grassland or agricultural
land cover types; however, false error due to date gaps remains a challenge for using high-resolution
imagery to validate a Landsat science product.
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blue, respectively; (D) burned area as classified by RapidEye-3; and (E) burned area as classified by 
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occurring in the two-day gap between the high-resolution and Landsat collection dates. The purple 
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Figure 5. A comparison of: (A) the RapidEye-3 image (DOY 122, 2015); (B) the Landsat ETM+ image
(DOY 120, 2015); (C) the Landsat ETM+ image using band combinations 7, 4 and 2 for red, green and
blue, respectively; (D) burned area as classified by RapidEye-3; and (E) burned area as classified by the
BAECV. The blue circles show a recent burned area agreed upon by the high-resolution imagery and
Landsat BAECV. The yellow circles show an incorrect error of omission due to a new fire occurring in
the two-day gap between the high-resolution and Landsat collection dates. The purple circles show
the more common commission errors due to the BAECV classifying fields with minimal vegetation as
burned. Moderate Resolution Imaging Spectroradiometer (MODIS) active fire points identified the fire
in the blue circle (DOY 119) but no other fires in the image extent shown.
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imagery from RapidEye satellites. Although the burned area, marked by the red rectangle, is clearly 
visible at DOY 81, it rapidly becomes difficult to distinguish a fading burn from freshly tilled or bare 
soil using aerial imagery, alone. 

 
Figure 7. Two examples demonstrating the role of vegetation recovery in creating false errors due to 
a date gap between the high-resolution imagery and the Burned Area Essential Climate Variable 
(BAECV): (A) an example of mapping a burned area in New Mexico at a site dominated by shrub-
scrub and grassland (p33r34); and (B) an example of mapping a burned area in California at a site 
dominated by mixed forest (p43r33). The high-resolution images are shown in false color where live 
vegetation is red.  

This analysis also raised the question, what is the ideal resolution to map (and validate) fires? 
Traditionally, products are validated using a source of imagery finer in resolution than the product 
[19]; however, it is also critical to consider the size and characteristics of the object being mapped, in 
this case burned areas. The high-resolution imagery had difficulty, for example, with unburned tree 
crowns within a continuously burned area. Alternatively, the BAECV would commonly map areas 
within a fire that showed little to no evidence of being burned in the high-resolution imagery. These 
were often bare soil patches or patches with little to no vegetation. The landscape metrics comparison 
demonstrated that the spatial resolution can be expected to influence within-fire heterogeneity. The 
BAECV mapped significantly more fire heterogeneity relative to MODIS, which suggests an 
improvement in data quality as products become finer in resolution. However, the high-resolution 

Figure 6. Examples of the persistence of burn evidence in agricultural areas in eastern Kansas from
(A) DOY 65, (B) DOY 81, (C) DOY 94 and (D) DOY 104, 2016 (four images across 39 days) using
imagery from RapidEye satellites. Although the burned area, marked by the red rectangle, is clearly
visible at DOY 81, it rapidly becomes difficult to distinguish a fading burn from freshly tilled or bare
soil using aerial imagery, alone.
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improvement in data quality as products become finer in resolution. However, the high-resolution 

Figure 7. Two examples demonstrating the role of vegetation recovery in creating false errors due
to a date gap between the high-resolution imagery and the Burned Area Essential Climate Variable
(BAECV): (A) an example of mapping a burned area in New Mexico at a site dominated by shrub-scrub
and grassland (p33r34); and (B) an example of mapping a burned area in California at a site dominated
by mixed forest (p43r33). The high-resolution images are shown in false color where live vegetation
is red.

This analysis also raised the question, what is the ideal resolution to map (and validate) fires?
Traditionally, products are validated using a source of imagery finer in resolution than the product [19];
however, it is also critical to consider the size and characteristics of the object being mapped, in this
case burned areas. The high-resolution imagery had difficulty, for example, with unburned tree crowns
within a continuously burned area. Alternatively, the BAECV would commonly map areas within a fire
that showed little to no evidence of being burned in the high-resolution imagery. These were often bare
soil patches or patches with little to no vegetation. The landscape metrics comparison demonstrated
that the spatial resolution can be expected to influence within-fire heterogeneity. The BAECV mapped
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significantly more fire heterogeneity relative to MODIS, which suggests an improvement in data
quality as products become finer in resolution. However, the high-resolution imagery also mapped
significantly more fire heterogeneity relative to the BAECV. The region-growing function built
into the BAECV to reduce noise, combined with the spatial resolution of the reference data, may
explain the switch from a lower commission error, relative to omission error, in the first validation
effort [18] to a lower omission error, relative to the commission error, in this high-resolution based
effort to validate the BAECV. The consistent differences observed in fire heterogeneity and shape
aggregation/disaggregation based on the spatial resolution of the imagery may be more or less relevant
depending on the application of the burned area dataset. Differences in total area burned can influence
estimates of total greenhouse gas emissions [6,7], while differences in distance to nearest unburned
patch will influence predictions of recovery rate due to seed dispersal [75–77] and could be relevant to
guiding ground-based recovery measures. Alternatively, the additional detail may be less relevant in
deriving relationships between burned area and climate, as most climate and other geographical data
layers are rarely offered at a resolution finer than 30 m.

5. Conclusions

The validation of Landsat science products, such as the USGS’s BAECV is an essential component
of product generation, but challenging to accomplish given the long time span and moderate spatial
resolution over which these products are generated. We used commercial high-resolution imagery to
validate the BAECV. Although we were unable to validate the first portion of the product (1984–2002)
using this source of imagery, by utilizing a disproportionate sampling strategy and close to 300
high-resolution images across CONUS (2003–2015) we were able to generate accuracy statistics with
which to evaluate the BAECV. The BAECV performed well across the western United States (Arid West
and Mountain West), but saw large errors of commission in the Midwest or Great Plains, where areas
with low vegetation were frequently mapped as burned. Accuracy was also poor in the eastern United
States, where difficulty in accurately mapping agricultural and wetland fires may have contributed.
The BAECV showed a strong linear correlation in magnitude burned relative to high-resolution
images but tended to overestimate burned area extent. This source of commission was likely due
to the increase in fire heterogeneity and burned area disaggregation observed in mapping fires at
a finer spatial resolution. Further, region-growing methods incorporated into the BAECV algorithm
can help reduce within-fire noise [10], but may have exacerbated errors of commission when using
high-resolution imagery to validate. Commercial high-resolution imagery has been commonly used
to validate maps of individual fire events [32,33], but has not been widely utilized for national-scale
products. However, the increasing number of satellites collecting high-resolution imagery and rapid
improvements in the frequency with which imagery is being collected means increased opportunity to
utilize these sources of imagery in validation efforts.
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Appendix A

Table A1. All high-resolution images and the corresponding Landsat images used to validate the USGS Burned Area Essential Climate Variable (BAECV). W wetland:
woody wetland; EH wetland: emergent herbaceous wetland; TM: Thematic Mapper; ETM+ Enhanced Thematic Mapper Plus; Mtn: mountain.

Region State Sensor Images (Burned
and Not Burned) Year Image DOY

(High-Resolution)
Image DOY

(Landsat) Gap (Days) Landsat
Sensor

Landsat
Path/Row Dominant Landcover

Arid West AZ Worldview-2 2 2011 164 174 10 ETM+ p35r37 Evergreen
Arid West AZ QuickBird-2 2 2011 178 182 4 TM p35r37 Evergreen
Arid West AZ Worldview-2 1 2013 210 211 1 ETM+ p35r37 Evergreen, shrub/scrub
Arid West AZ Worldview-2 5 2014 152 150 2 ETM+ p35r37 Evergreen, shrub/scrub
Arid West AZ Worldview-2 3 2012 174 175 1 ETM+ p37r36 Evergreen
Arid West AZ/NM Worldview-2 6 2012 275 273 2 ETM+ p35r37 Evergreen, shrub/scrub
Arid West CA GeoEye-1 1 2009 269 264 5 TM p43r35 Shrub/scrub, grassland
Arid West CA GeoEye-1 1 2009 258 264 6 TM p43r35 Shrub/scrub, evergreen
Arid West CA WorldView-2 3 2014 199 199 0 ETM+ p42r35 Agriculture
Arid West CA QuickBird-2 3 2006 351 329 22 TM p42r36 Shrub/scrub
Arid West CA QuickBird-2 4 2006 333 329 4 TM p42r36 Shrub/scrub
Arid West CA QuickBird-2 3 2009 230 241 11 TM p42r36 Shrub/scrub
Arid West CA QuickBird-2 3 2008 318 294 24 TM p43r35 Shrub/scrub, evergreen
Arid West CA QuickBird-2 9 2008 323 309 14 ETM+ p44r33 Shrub/scrub
Arid West NM QuickBird-2 1 2003 162 169 7 TM p34r37 Evergreen forest
Arid West NM QuickBird-2 4 2010 201 196 5 ETM+ p34r37 Shrub/scrub, evergreen
Arid West NM QuickBird-2 1 2012 221 227 6 ETM+ p33r35 Shrub/scrub, evergreen
Arid West NM Worldview-2 1 2011 238 249 11 ETM+ p32r35 Shrub/scrub, evergreen
Arid West NV QuickBird-2 10 2005 243 241 2 TM p39r34 Shrub/scrub, grassland
Arid West NV QuickBird-2 2 2005 215 209 6 TM p39r34/p39r35 Shrub/scrub
Arid West NV QuickBird-2 1 2011 325 329 4 ETM+ p43r33 Developed
Arid West OR QuickBird-2 3 2011 248 252 4 TM p45r29 Shrub/scrub
Arid West WA QuickBird-2 11 2003 271 246 25 TM p45r28 Shrub/scrub
Arid West WA QuickBird-2 3 2003 245 246 1 TM p45r28 Shrub/scrub
Arid West WA GeoEye-1 2 2009 261 254 7 ETM+ p45r28 Shrub/scrub, grassland
Arid West WA QuickBird-2 1 2003 268 246 22 TM p45r27 Shrub/scrub
Arid West WA QuickBird-2 4 2009 235 238 3 ETM+ p45r28 Shrub/scrub, agriculture
Mtn West CA WorldView-2 3 2013 236 228 8 ETM+ p42r35 Mixed forest
Mtn West CA WorldView-2 2 2012 268 281 13 ETM+ p43r33 Evergreen, shrub/scrub
Mtn West CA QuickBird-2 3 2010 243 274 31 TM p44r33 Evergreen, grassland
Mtn West CA WorldView-2 2 2010 212 211 1 ETM+ p43r33 Evergreen, shrub/scrub
Mtn West CA QuickBird-2 1 2009 289 271 18 TM p44r33 Shrub/scrub
Mtn West CA QuickBird-2 1 2007 184 195 11 TM p43r33 Shrub/scrub, evergreen
Mtn West CA QuickBird-2 3 2009 258 239 19 TM p44r34 Evergreen
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Table A1. Cont.

Region State Sensor Images (Burned
and Not Burned) Year Image DOY

(High-Resolution)
Image DOY

(Landsat) Gap (Days) Landsat
Sensor

Landsat
Path/Row Dominant Landcover

Mtn West CO Worldview-2 1 2012 186 195 9 ETM+ p33r33 Evergreen
Mtn West CO WorldView-2 2 2012 169 218 49 ETM+ p34r32 Evergreen
Mtn West CO QuickBird-2 1 2012 127 129 2 ETM+ p35r32 Shrub/scrub
Mtn West CO QuickBird-2 2 2013 324 293 31 ETM+ p33r33 Evergreen
Mtn West CO QuickBird-2 2 2010 142 148 6 ETM+ p34r32 Evergreen, shrub/scrub
Mtn West CO Worldview-2 2 2004 282 183 1 ETM+ p35r32 Shrub/scrub
Mtn West CO WorldView-2 1 2011 238 248 10 TM p33r34 Shrub/scrub
Mtn West CO Worldview-2 1 2010 255 260 5 ETM+ p34r32 Evergreen
Mtn West ID WorldView-2 2 2011 275 272 3 TM p41r28 Evergreen
Mtn West ID QuickBird-2 3 2006 256 274 18 TM p41r29 Evergreen
Mtn West ID QuickBird-2 2 2007 300 245 55 TM p41r29 Evergreen
Mtn West ID QuickBird-2 2 2003 225 218 7 TM p41r30 Shrub/scrub, evergreen
Mtn West MT QuickBird-2 2 2006 287 274 13 TM p41r28 Shrub/scrub, evergreen
Mtn West MT QuickBird-2 2 2006 274 274 0 TM p41r28 Evergreen, grassland
Mtn West MT QuickBird-2 1 2006 256 250 6 ETM+ p41r28 Evergreen
Mtn West MT WorldView-2 5 2011 291 272 19 TM p41r28 Evergreen
Mtn West NM QuickBird-2 1 2006 219 242 23 ETM+ p33r34 Shrub/scrub, grassland
Mtn West NM WorldView-2 2 2010 304 2011 annual - TM/ETM+ p33r35/p34r35 Evergreen
Mtn West NM QuickBird-2 5 2010 276 261 15 TM p33r34 Evergreen, grassland
Mtn West OR WorldView-2 4 2011 266 252 14 TM p45r28/p45r29 Shrub/scrub
Mtn West WA QuickBird-2 6 2003 240 246 6 TM p45r28 Evergreen
Mtn West WY GeoEye-1 1 2012 185 202 17 ETM+ p34r31 Shrub/scrub, evergreen
Mtn West WY QuickBird-2 1 2005 257 254 3 TM p34r31 Shrub/scrub, evergreen

Great Plains KS QuickBird-2 2 2006 91 88 3 ETM+ p27r33 Agriculture, grassland
Great Plains KS QuickBird-2 3 2006 91 88 3 ETM+ p27r33 Agriculture, grassland
Great Plains KS QuickBird-2 4 2004 107 107 0 TM p27r33/p27r34 Agriculture, grassland
Great Plains KS QuickBird-2 2 2004 71 67 4 ETM+ p27r34 Agriculture
Great Plains KS Worldview-2 1 2010 77 82 5 TM p28r33 Grassland
Great Plains KS Worldview-2 1 2010 294 290 4 TM p28r33 Grassland, agriculture
Great Plains TX QuickBird-2 4 2011 76 67 9 TM p30r36 Shrub/scrub, grassland
Great Plains SD QuickBird-2 2 2011 151 152 1 TM p33r30 Evergreen, grassland
Great Plains MN QuickBird-2 6 2003 101 102 1 TM p29r27 Agriculture
Great Plains MN Worldview-2 1 2012 107 110 3 ETM+ p30r26 Agriculture
Great Plains MN Worldview-2 6 2015 146 143 3 ETM+ p29r26/p29r27 Grassland
Great Plains MN Worldview-2 3 2015 200 207 7 ETM+ p29r27 Agriculture
Great Plains KS RapidEye-2 6 2009 173 174 1 ETM+ p29r33 Agriculture
Great Plains SD RapidEye-2 2 2014 155 2014 annual - ETM+ p33r30 Evergreen
Great Plains KS RapidEye-2 9 2013 137 137 0 ETM+ p29r33 Agriculture, grassland
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Table A1. Cont.

Region State Sensor Images (Burned
and Not Burned) Year Image DOY

(High-Resolution)
Image DOY

(Landsat) Gap (Days) Landsat
Sensor

Landsat
Path/Row Dominant Landcover

Great Plains KS RapidEye-2 13 2014 99 101 2 ETM+ p28r33 Grassland, agriculture
Great Plains KS RapidEye-2 3 2015 122 120 2 ETM+ p28r34 Grassland, agriculture

East FL Worldview-2 1 2011 258 253 5 ETM+ p15r42 EH wetlands
East FL QuickBird-2 1 2011 334 314 20 TM p15r41 W wetland, agriculture
East FL QuickBird-2 6 2005 327 329 2 TM p15r42 Agriculture, EH wetlands
East FL QuickBird-2 3 2007 338 343 5 ETM+ p15r42 EH wetlands
East FL QuickBird-2 6 2012 145 147 2 ETM+ p17r39 W wetland
East FL/GA QuickBird-2 1 2004 322 349 27 ETM+ p17r39 Evergreen, W wetland
East FL/GA Worldview-2 9 2014 3 24 19 ETM+ p17r39 W wetland, evergreen
East GA QuickBird-2 3 2007 119 141 22 TM p17r38/p17r39 Shrub/scrub, W wetland
East LA GeoEye-1 1 2009 175 179 4 TM p24r39 EH wetlands
East LA GeoEye-1 3 2011 216 217 1 TM p24r39 EH wetlands
East LA RapidEye-2 4 2014 277 281 4 ETM+ p24r39 EH wetlands
East SC QuickBird-2 13 2009 111 107 4 TM p16r37 Agriculture, W wetlands
East SC QuickBird-2 3 2008 112 121 9 TM p16r37 W wetland
East SC QuickBird-2 4 2008 153 153 0 TM p16r37 W wetland
East WV QuickBird-2 4 2007 129 132 3 TM p18r33 Mixed forest
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